ECE447: Robotics Engineering

Lecture 3: Rigid Motions and Homogeneous Transformations (Part 1)

Dr. Haitham El-Hussieny

Electronics and Communications Engineering
Faculty of Engineering (Shoubra)
Benha University

Spring 2019

Lecture Outline:

(1) Introduction.
(2) Representation of Translation.
(3) Representation of Rotations.
(4) Representation of Rotations in 3D.

Table of Contents

(1) Introduction.
(2) Representation of Translation.
(3) Representation of Rotations.

4 Representation of Rotations in 3D.

Introduction:

- A robot manipulator is schematically represented as a kinematic chain.
■ It is composed by a series of rigid bodies, the links, connected by joints.
- The resulting end-effector motion is obtained by composition of the elementary motions of each link with respect to the previous one.
- To manipulate an object in space, it is necessary to describe the end-effector position and orientation.

Introduction:

- Kinematics is the study of how the robot moves not why it moves (Dynamics).

■ In robotic manipulation we are concerned with two common kinematic problems:

Introduction:

■ Kinematics is the study of how the robot moves not why it moves (Dynamics).
■ In robotic manipulation we are concerned with two common kinematic problems:

Introduction:

- Kinematics is the study of how the robot moves not why it moves (Dynamics).

■ In robotic manipulation we are concerned with two common kinematic problems:

Inverse Kinematics

Introduction:

Given: Joint Variables $\mathbf{q}(\theta$ or d) Required: Position and orientation of end-effector, \mathbf{p}.

$$
\mathbf{p}=f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=f(\mathbf{q})
$$

EASY!

Forward Kinematics

Given: Joint Variables \mathbf{q} (θ or d) Required: Position and orientation of end-effector, \mathbf{p}.

$$
\mathbf{p}=f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=f(\mathbf{q})
$$

EASY!

Inverse Kinematics

Given: Position and orientation of end-effector, \mathbf{p}.
Required: Joint Variables $\mathbf{q}(\theta$ or d) to get \mathbf{p}

$$
\mathbf{q}=f(\mathbf{p})
$$

DIFFICULT (May be infinite solutions exist)!

Introduction:

- Solving the manipulator kinematics requires the assignment of different coordinate frames on each joint and the end-effector.

Dr. Haitham El-Hussieny

$7 / 22$

Introduction:

- Solving the manipulator kinematics requires the assignment of different coordinate frames on each joint and the end-effector.
- The goal is to find the transformation between the end-effector and the base frames.

Dr. Haitham El-Hussieny

$7 / 22$

Introduction:

- Solving the manipulator kinematics requires the assignment of different coordinate frames on each joint and the end-effector.
- The goal is to find the transformation between the end-effector and the base frames.

$$
T_{2}^{0}=T_{1}^{0} * T_{2}^{1}
$$

- In robotic manipulators, two basic transformations are used:

Translation and Rotation.

Dr. Haitham El-Hussieny

Table of Contents

(1) Introduction.
(2) Representation of Translation.
(3) Representation of Rotations.
(4) Representation of Rotations in 3D.

Representation of Translation:

Coordinate Frame:

- The position and orientation of an object in space is referred to as its pose.

Representation of Translation:

Coordinate Frame:

- The position and orientation of an object in space is referred to as its pose.
- Any description of an object's pose must always be made in relation to some coordinate frames.

Coordinate Frame:
A set n of orthonormal basis vectors spanning \mathbb{R}^{n}.

Representation of Translation:

Coordinate Frame:

- The position and orientation of an object in space is referred to as its pose.
- Any description of an object's pose must always be made in relation to some coordinate frames.
- In robotics, it is often convenient to keep track of multiple coordinate frames. (Camera, robot, user, world, ...etc.)

Coordinate Frame:
A set n of orthonormal basis vectors spanning \mathbb{R}^{n}.

Representation of Translation:

Representation of a Point:

- A point corresponds a particular location in the space. For example the point p.

Representation of Translation:

Representation of a Point:

- A point corresponds a particular location in the space. For example the point p.
- A point has different representation (coordinates) in different frames.

Representation of Translation:

Representation of a Point:

- A point corresponds a particular location in the space. For example the point p.
- A point has different representation (coordinates) in different frames.

Example (Point p):
w.r.t. frame $\{\mathbf{0}\}: p^{0}=v_{1}=\left[\begin{array}{l}6 \\ 5\end{array}\right]$
w.r.t. frame $\{\mathbf{1}\}: p^{1}=v_{2}=\left[\begin{array}{c}-2.8 \\ 4.2\end{array}\right]$

Note: the frame of reference is written in right superscript style. p^{k}, o_{1}^{0}

Representation of Translation:

Representation of a Point:

- Since the origin of a frame is just a point, we can express the origin of one frame with respect to another.

Example:
$o_{1}^{0}=\left[\begin{array}{c}10 \\ 5\end{array}\right] \quad o_{1}$ represented in frame $\{0\}$
$o_{0}^{1}=\left[\begin{array}{c}-10.6 \\ 3.5\end{array}\right] \quad o_{0}$ represented in frame $\{1\}$

Representation of Translation:

Representation of a Point:

- The point translation could be also represented in 3-dimensional space.

Example:
$o_{1}^{0}=\left[\begin{array}{l}x_{1}^{0} \\ y_{1}^{0} \\ z_{1}^{0}\end{array}\right]$
o_{1} represented in frame $\{0\}$
$o_{0}^{1}=\left[\begin{array}{l}x_{0}^{1} \\ y_{0}^{1} \\ z_{0}^{1}\end{array}\right]$
o_{0} represented in frame $\{1\}$

Table of Contents

(1) Introduction.
(2) Representation of Translation.
(3) Representation of Rotations.
(4) Representation of Rotations in 3D.

Representation of Rotations:

Rotation in 2D:

- Frame $\{1\}$ is obtained by rotating frame $\{0\}$ by an angle θ.

Representation of Rotations:

Rotation in 2D:

- Frame $\{1\}$ is obtained by rotating frame $\{0\}$ by an angle θ.
- We need to find the relative orientation between these two frames.

Representation of Rotations:

Rotation in 2D:

- Frame $\{1\}$ is obtained by rotating frame $\{0\}$ by an angle θ.
- We need to find the relative orientation between these two frames.
- We can specify the orientation by finding the representation of coordinate vectors of frame $\{1\}$ w.r.t frame $\{0\}$.

$$
R_{1}^{0}=\left[x_{1}^{0} \mid y_{1}^{0}\right]
$$

x_{1}^{0} and y_{1}^{0} are the unit vector x_{1} and y_{1} represented in frame $\{0\}$.

Representation of Rotations:

Rotation in 2D:

$$
R_{1}^{0}=\left[x_{1}^{0} \mid y_{1}^{0}\right]=\left[\begin{array}{ll}
\hat{x}_{1} \cdot \hat{x}_{0} & \hat{y}_{1} \cdot \hat{x}_{0} \\
\hat{x}_{1} \cdot \hat{y}_{0} & \hat{y}_{1} \cdot \hat{y}_{0}
\end{array}\right]
$$

Projecting the axes of frame $\{1\}$ onto the axes of frame $\{0\}$:

Representation of Rotations:

Rotation in 2D:

$$
R_{1}^{0}=\left[x_{1}^{0} \mid y_{1}^{0}\right]=\left[\begin{array}{ll}
\hat{x}_{1} \cdot \hat{x}_{0} & \hat{y}_{1} \cdot \hat{x}_{0} \\
\hat{x}_{1} \cdot \hat{y}_{0} & \hat{y}_{1} \cdot \hat{y}_{0}
\end{array}\right]
$$

Projecting the axes of frame $\{1\}$ onto the axes of frame $\{0\}$:

$$
x_{1}^{0}=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \quad y_{1}^{0}=\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]
$$

Representation of Rotations:

Rotation in 2D:

$$
R_{1}^{0}=\left[x_{1}^{0} \mid y_{1}^{0}\right]=\left[\begin{array}{ll}
\hat{x}_{1} \cdot \hat{x}_{0} & \hat{y}_{1} \cdot \hat{x}_{0} \\
\hat{x}_{1} \cdot \hat{y}_{0} & \hat{y}_{1} \cdot \hat{y}_{0}
\end{array}\right]
$$

Projecting the axes of frame $\{1\}$ onto the axes of frame $\{0\}$:

$$
x_{1}^{0}=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \quad y_{1}^{0}=\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]
$$

$$
R_{1}^{0}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \quad \text { Rotation Matrix }
$$

Representation of Rotations:

Rotation in 2D:

Properties of Rotation Matrices:

(1) $\operatorname{det}\left(R_{1}^{0}\right)=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.

$$
R_{1}^{0}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Representation of Rotations:

Rotation in 2D:

Properties of Rotation Matrices:

(1) $\operatorname{det}\left(R_{1}^{0}\right)=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.
(2) Inverse Rotation:

$$
R_{0}^{1}=\left[x_{0}^{1} \mid y_{0}^{1}\right]=\left[\begin{array}{ll}
\hat{x}_{0} \cdot \hat{x}_{1} & \hat{y}_{0} \cdot \hat{x}_{1} \\
\hat{x}_{0} \cdot \hat{y}_{1} & \hat{y}_{0} \cdot \hat{y}_{1}
\end{array}\right]
$$

$$
R_{1}^{0}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Representation of Rotations:

Rotation in 2D:

Properties of Rotation Matrices:

(1) $\operatorname{det}\left(R_{1}^{0}\right)=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.
(2) Inverse Rotation:

$$
\begin{aligned}
& R_{0}^{1}=\left[x_{0}^{1} \mid y_{0}^{1}\right]=\left[\begin{array}{ll}
\hat{x}_{0} \cdot \hat{x}_{1} & \hat{y}_{0} \cdot \hat{x}_{1} \\
\hat{x}_{0} \cdot \hat{y}_{1} & \hat{y}_{0} \cdot \hat{y}_{1}
\end{array}\right] \\
& R_{0}^{1}=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]=\left(R_{1}^{0}\right)^{T}
\end{aligned}
$$

Projecting the axes of frame $\{0\}$ onto the axes of frame $\{1\}$.

$$
R_{1}^{0}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Representation of Rotations:

Rotation in 2D:

Properties of Rotation Matrices:

(3) Inverse of Rotation Matrix:

$$
\left(R_{1}^{0}\right)^{-1}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]^{-1}=\left(R_{1}^{0}\right)^{T}=\left(R_{0}^{1}\right)
$$

Representation of Rotations:

Rotation in 2D:

Properties of Rotation Matrices:

(3) Inverse of Rotation Matrix:

$$
\left(R_{1}^{0}\right)^{-1}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]^{-1}=\left(R_{1}^{0}\right)^{T}=\left(R_{0}^{1}\right)
$$

(9) R is Special Orthogonal matrix $S O(n)$:

$$
R R^{T}=I_{n}
$$

$$
R_{1}^{0}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Table of Contents

(1) Introduction.
(2) Representation of Translation.
(3) Representation of Rotations.

4 Representation of Rotations in 3D.

Representation of Rotations in 3D:

We need to project frame $\{1\}$ into frame $\{0\}$:

Representation of Rotations in 3D:

We need to project frame $\{1\}$ into frame $\{0\}$:

$$
\begin{gathered}
R_{1}^{0}=\left[x_{1}^{0}\left|y_{1}^{0}\right| z_{1}^{0}\right]=\left[\begin{array}{ccc}
\hat{x}_{1} \cdot \hat{x}_{0} & \hat{y}_{1} \cdot \hat{x}_{0} & \hat{z}_{1} \cdot \hat{x}_{0} \\
\hat{x}_{1} \cdot \hat{y}_{0} & \hat{y}_{1} \cdot \hat{y}_{0} & \hat{z}_{1} \cdot \hat{y}_{0} \\
\hat{x}_{1} \cdot \hat{z}_{0} & \hat{y}_{1} \cdot \hat{z}_{0} & \hat{z}_{1} \cdot \hat{z}_{0}
\end{array}\right] \\
\left(R_{1}^{0}\right)=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]=R_{z, \theta}
\end{gathered}
$$

$R_{z, \theta}$ is the basic rotation matrix around z -axis.

Representation of Rotations in 3D:

Basic Rotation Matrices:

$$
R_{x, \theta}
$$

Representation of Rotations in 3D:

Basic Rotation Matrices:

$$
\begin{aligned}
& R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \\
& R_{y, \theta}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
\end{aligned}
$$

$$
R_{x, \theta}
$$

$$
R_{y, \theta}
$$

Robot Operating System (ROS)

- Problem: Lack of standard for robots.

■ ROS: is an open-source robot operating system:

- A set of software libraries and tools that help you build robot applications that work across a wide variety of robotic platforms.
- Originally developed in 2007 at the Stanford Artificial Intelligence Laboratory and development continued at Willow Garage.
- Since 2013 managed by OSRF (Open Source Robotics Foundation).
- ROS is working under Linux (Recommended Ubuntu).

$\because \bullet \square$

Q Open Source Robotics Foundation

ROS official page

Questions?

haitham.elhussieny@feng.bu.edu.eg

